А. Энергетический обмен в мышечной ткани

Важнейшей функцией мышечного волокна является сократительная. Процесс сокращения и расслабления связан с потреблением АТФ (АТР), гидролиз которого катализирует миозин-АТФ-аза [1] (см. Сократительная система). Однако небольшой запас АТФ, имеющийся в мышцах, расходуется менее чем за 1 с после стимуляции.

Потребности работающей мышцы в АТФ удовлетворяются за счёт следующих ферментативных реакций: 1. Резерв в виде креатинфосфата. Быстрая регенерация АТФ может быть достигнута за счёт переноса фосфатной группы креатинфосфата на АДФ (ADP) в реакции, катализируемой креатинкиназой [2]. Однако и этот мышечный резерв «высокоэргического фосфата» расходуется в течение нескольких секунд. В спокойном состоянии креатинфосфат вновь синтезируется из креатина. При этом фосфатная группа присоединяется по гуанидиновой группе креатина (N-гуанидино-М-метилглицина). Креатин, который синтезируется в печени, поджелудочной железе и почках, в основном накапливается в мышцах. Здесь креатин медленно циклизуется за счёт неферментативной реакции [3] с образованием креатинина, который поступает в почки и удаляется из организма (см. Моча).

2. Анаэробный гликолиз. В мышечной ткани наиболее важным долгосрочным энергетическим резервом является гликоген (см. Сократительная система). В покоящейся ткани содержание гликогена составляет до 2 % от мышечной массы. При деградации под действием фосфорилазы гликоген легко расщепляется с образованием глюкозо-6-фосфата, который при последующем гликолизе превращается в пируват. При большой потребности в АТФ и недостаточном поступлении кислорода пируват за счёт анаэробного гликолиза восстанавливается в молочную кислоту (лактат), которая диффундирует в кровь (цикл Кори, см. Метаболическая регуляция мышечного сокращения).

3. Окислительное фосфорилирование. В аэробных условиях образующийся пируват поступает в митохондрии, где подвергается окислению. Окислительное фосфорилирование (см. Белки главного комплекса гисто-совместимости) - наиболее эффективный и постоянно действующий путь синтеза АТФ. Однако этот путь реализуется при условии хорошего снабжения мышц кислородом. Наряду с глюкозой, образующейся при расщеплении мышечного гликогена, для синтеза АТФ используются и другие «энергоносители», присутствующие в крови: глюкоза крови, жирные кислоты и кетоновые тела.

4. Образование инозинмонофосфата [ИМФ (IMP)]. Другим источником быстрого восстановления уровня АТФ является конверсия АДФ в АТФ и АМФ (АМР), катализируемая аденилаткиназой (миокиназой) [5]. Образовавшийся АМФ за счёт дезаминирования частично превращается в ИМФ (инозинмонофосфат) (см. Цитостатики), что сдвигает реакцию в нужном направлении.

Из всех способов синтеза АТФ наиболее продуктивным является окислительное фосфорилирование. За счёт этого процесса обеспечиваются потребности в АТФ постоянно работающей сердечной мышцы (миокарда). Вот почему для успешной работы сердечной мышцы обязательным условием является достаточное снабжение кислородом (инфаркт миокарда — это следствие перебоев в поступлении кислорода).

В высокоактивных (красных) скелетных мышцах источником энергии для рефосфорилирования АДФ служит окислительное фосфорилирование в митохондриях. В обеспечении этих мышц кислородом принимает участие миоглобин ((Mb) — близкий гемоглобину белок, обладающий свойством запасать кислород. В малоактивных скелетных мышцах, лишённых красного миоглобина и поэтому белых, главным источником энергии для восстановления уровня АТФ является анаэробный гликолиз. Такие мышцы сохраняют способность к быстрым сокращениям, однако они могут работать лишь короткое время, поскольку при гликолизе образование АТФ идёт с низким выходом. Спустя некоторое время мышцы истощаются в результате изменения pH в мышечных клетках.

Расщепление гликогена контролируется гормонами (см. Гормональный контроль). Процесс гликогенолиза стимулируется адреналином (через b-рецепторы) за счёт образования цАМФ и активации киназы фосфорилазы. Активация фосфорилазы наступает также при увеличении концентрации ионов Са2+ во время мышечного сокращения.


Ткани и органы. Мышцы / Источники энергии

Следущая статья   |   — Вернуться в раздел


Practical Forensic Microscopy: A Laboratory Manual / Forensic Microscopy: A Laboratory Manual will provide the student with a practical overview and understanding of the various microscopes and microscopic techniques employed within the field of forensic science. Each laboratory experiment has been carefully designed to cover the variety of evidence dPractical Forensic Microscopy: A Laboratory Manual
Forensic Microscopy: A Laboratory Manual will provide the student with a practical overview and understanding of the various microscopes and ...
Саморегулируемые волны химических реакций и биологических популяций / Монография посвящена математическому моделированию и исследованию нелинейных волн химических реакций и биологических популяций, существующих за счёт внутренних процессов в волнах. Впервые систематически излагаются разработанные автором методы бесконечной и полубесконечной зон реакции. Первый примениСаморегулируемые волны химических реакций и биологических популяций
Монография посвящена математическому моделированию и исследованию нелинейных ...
Справочник биохимика / В книге учёных из Великобритании и Австралии собраны и систематизированы сведения, представляющие интерес практически для любой биохимической лаборатории, каждого биохимика, в какой бы области он ни специализировался. Она содержит данные о физико-химических и биологических свойствах биологически актСправочник биохимика
В книге учёных из Великобритании и Австралии собраны и систематизированы ...
Откровенная наука. Беседы с корифеями биохимии и медицинской химии / Книга И. Харгиттаи состоит из 36 бесед с выдающимися учёными XX века, работавшими в области биохимии, медицинской химии и смежных дисциплин, многие из которых были удостоены Нобелевской премии. Среди них: один из создателей модели пространственной структуры ДНК («двойной спирали») Джеймс Уотсон; одиОткровенная наука. Беседы с корифеями биохимии и медицинской химии
Книга И. Харгиттаи состоит из 36 бесед с выдающимися учёными XX века, работавшими в ...