А. Реализация и передача генетической информации

Хранение информации. Генетическая информация закодирована в последовательности нуклеотидов ДНК (DNA), организованных в функциональные участки, называемые генами. [РНК (RNA) как носитель генетической информации используется только некоторыми вирусами.] Участки ДНК кодируют белки, то есть они содержат информацию об аминокислотной последовательности белков. Каждый остаток представлен в ДНК своим кодовым словом (кодоном), состоящим из трёх следующих друг за другом оснований. Так, ДНК-кодон для фенилаланина представлен тринуклеотидом ТТС (2). На уровне ДНК кодоны образуют её некодирующую цепь [последовательность нуклеотидов которой соответствует последовательности мРНК (mRNA)].

Репликация. Во время деления клеток генетическая информация должна перейти в дочерние клетки. Для достижения этого вся ДНК клетки копируется в процессе репликации во время S-фазы клеточного цикла (см. Клеточный цикл), при этом каждая её цепь служит матрицей для синтеза комплементарной последовательности (1, см. Репликация).

Транскрипция. Для экспрессии гена, то есть синтеза закодированных в нем белков, последовательность нуклеотидов кодирующей цепи ДНК должна быть трансформирована в аминокислотную последовательность. Поскольку ДНК не принимает непосредственного участия в синтезе белка, информация, хранящаяся в ядре, должна быть перенесена на рибосомы, где собственно и осуществляется биосинтез белков. Для этого соответствующий участок кодирующей цепи ДНК считывается (транскрибируется) с образованием гетерогенной ядерной РНК [гяРНК (hnRNA)], то есть последовательность этой РНК комплементарна кодирующей цепи ДНК (3; см. Деградация нуклеотидов). Поскольку в РНК вместо тимина содержится урацил (см. Трансаминирование и дезаминирование), AAG триплет ДНК трансформируется в UUC-кодон гяРНК.

Созревание РНК. У эукариот гяРНК, прежде, чем покинуть ядро в виде матричной РНК (мРНК, 4), претерпевает существенные изменения: из молекулы вырезаются избыточные (некодирующие) участки (интроны), а оба конца транскриптов модифицируются путём присоединения дополнительных нуклеотидов (см. Созревание РНК).

Трансляция. Зрелая мРНК попадает в цитоплазму и связывается с рибосомами, преобразующими полученную информацию в аминокислотную последовательность. Рибосомы (см. Рибосомы: инициация трансляции) — это рибонуклеопротеидные комплексы, включающие несколько десятков белков и несколько молекул рибосомной РНК [рРНК (rRNA), см. Цикл мочевины]. Рибосомные РНК выполняют функцию структурного элемента рибосом, а также принимают участие в связывании мРНК и образовании пептидных связей.

Механизм преобразования генетической информации основан на взаимодействии кодонов мРНК с транспортной РНК [тРНК (tRNA)], которая переносит на рибосому аминокислоты, связанные с 3′-концом тРНК, в соответствии с информацией, закодированной в мРНК. Примерно в середине цепи тРНК расположен триплет (например, GAA), называемый антикодоном и комплементарный соответствующему кодону в мРНК. Если транслируется кодон UUC, то с ним взаимодействует антикодон в составе Phe-TPHK (5), несущей на 3′-конце остаток фенилаланина. Таким образом, остаток аминокислоты занимает положение, в котором на него может быть перенесена растущая полипептидная цепь, связанная с соседней тРНК (6).

Активация аминокислот. Прежде чем связаться с рибосомой, транспортные РНК присоединяют соответствующую аминокислоту с помощью специфического «узнающего» фермента (7, схема Генетический код, активация аминокислот), обеспечивающего точный перенос (трансляцию) генетической информации с уровня нуклеиновых кислот на уровень белка.


Молекулярная генетика / Молекулярная генетика: общие сведения

Статьи раздела «Молекулярная генетика: общие сведения»:

Следущая статья   |   — Вернуться в раздел


Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils (Chemical Industries) / During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments formation. Exploring many aspects related to asphaltenes composition and conversion, Asphaltenes: Chemical Transformation during Hydroprocessing of HAsphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils (Chemical Industries)
During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments ...
Geobiology: Objectives, Concepts, Perspectives, First Edition / Book DescriptionGeobiology is an exciting and rapidly developing research discipline that opens new perspectives in understanding Earth as a system. To determine and to exploit its possibilities, this promising scientific field will benefit from a discussion of its definition as a research disciplinGeobiology: Objectives, Concepts, Perspectives, First Edition
Book DescriptionGeobiology is an exciting and rapidly developing research discipline that opens new perspectives in understanding Earth as a system. ...
Биологическая химия / Учебник состоит из четырёх частей, включающих 15 глав, в которых изложены вопросы методики изучения химической структуры и обмена веществ: биосинтеза белка и нуклеиновых кислот, биологического окисления и окислительного фосфорилирования, гормональной регуляции обмана веществ. В целом учебник подготоБиологическая химия
Учебник состоит из четырёх частей, включающих 15 глав, в которых изложены вопросы ...
Современные успехи химии и биологии моря / Книга Харвея, содержащая много фактического материала и интересных выводов, безусловно заслуживает внимания. В ней достаточно сжато, наглядно и ясно изложены успехи химической океанологии. В своей первой книге, «Биохимия и физика моря», Харвей лишь как бы ощупью освещал вопрос о роли бактерий в эконСовременные успехи химии и биологии моря
Книга Харвея, содержащая много фактического материала и интересных выводов, ...