В аэробных условиях (на схеме слева) АТФ образуется почти исключительно за счёт окислительного фосфорилирования (см. Геном). Жирные кислоты в виде ацилкарнитина попадают в матрикс митохондрий (см. Транспортные системы), где подвергаются β-окислению с образованием ацил-КоА (см. Потенциал покоя и потенциал действия). Глюкоза в цитоплазме превращается в пируват путём гликолиза (см. Метаболизм липидов). Пируват транспортируется в митохондриальный матрикс, где декарбоксилируется пируватдегидрогеназным комплексом (см. Кислотно-основной баланс) с образованием ацетил-КоА. Восстановительные эквиваленты [2 НАДН + Н+ (NADH + Н+) на молекулу глюкозы], высвобождающиеся при гликолизе, переносятся в матрикс митохондрий малатным челноком. Образующиеся из жирных кислот ацетильные остатки окисляются до CO2 в цитратном цикле (см. Фибринолиз. Группы крови). Деградация аминокислот также приводит к ацетильным остаткам или продуктам, которые непосредственно включаются в цитратный цикл (см. Механизм действия гидрофильных гормонов). В соответствии с энергетическими потребностями клетки восстановительные эквиваленты переносятся дыхательной цепью на кислород (см. Белки главного комплекса гисто-совместимости). При этом высвобождается химическая энергия, которая путём создания протонного градиента используется для синтеза АТФ (см. Моноклональные антитела, иммуноанализ).
В отсутствие кислорода, то есть в анаэробных условиях (на схеме справа), картина полностью меняется. Так как электронных акцепторов для дыхательной цепи не хватает, НАДН + Н+ и QH2 не могут окисляться повторно. Вследствие этого останавливается не только митохондриальный синтез АТФ, но почти весь обмен веществ в митохондриальном матриксе. Главной причиной такой остановки является высокая концентрация НАДН (NADH), ингибирующая цитратный цикл и пируватдегидрогеназу (см. Компенсаторные функции печени). Останавливаются также процесс β-окисления и функционирование малатного челнока, зависящие от наличия свободного НАД+. Поскольку энергия уже не может быть получена за счёт деградации аминокислот, клетка становится полностью зависимой в энергетическом отношении от потребления глюкозы при гликолизе. При этом обязательным условием является постоянное окисление образующегося НАДН + Н+. Так как этот процесс уже не может идти в митохондриях, в клетках животных, функционирующих в анаэробных условиях, пируват восстанавливается до лактата, который поступает в кровь. Процессы этого типа называют брожением (см. Ферментация). Продукция АТФ при этих процессах незначительна: при образовании лактата возникают только 2 молекулы АТФ на молекулу глюкозы.
Для того чтобы оценить число образованных в аэробном состоянии молекул АТФ, необходимо знать так называемое P/O-соотношение, то есть молярное соотношение синтезированных АТФ (Р) и воды (O). Во время переноса двух электронов от НАДН на O2 в межмембранное пространство транспортируются около 10 протонов и только 6 молекул убихинола (QH2). Для синтеза АТФ АТФ-синтаза нуждается в трёх ионах Н+, так что максимальное возможное Р/O-соотношение составляет примерно 3 или, соответственно, 2 (для убихинола). Нужно, однако, учитывать, что при переходе метаболитов в матрикс и обмене митохондриального АТФ4- на цитоплазматический АДФ3- в межмембранном пространстве также расходуются протоны. Поэтому при окислении НАДН Р/O-соотношение скорее всего составляет 2,5, а при окислении QH2 — 1,5. Если на основе этих величин рассчитать энергобаланс аэробного гликолиза, получается, что окисление одной молекулы глюкозы сопровождается синтезом 32 молекул АТФ.