А. Окислительно-восстановительная система дыхательной цепи

Электроны, передаваемые НАДН (NADH), не переносятся прямо на кислород. Они проходят по меньшей мере десять промежуточных окислительно-восстановительных систем, большинство из которых это связанные простетические группы в комплексах I, III и IV. Прежде всего поражает большое число коферментов, принимающих участие в переносе электронов. Как показано в статье Фосфолипиды и гликолипиды, изменение свободной энергии ΔG в реакциях восстановления зависит только от разности окислительно-восстановительных потенциалов донора и акцептора. Наличие дополнительных окислительно-восстановительных систем между НАДН и O2 не приводит к изменению свободной энергии реакции. Общая величина энергии реакции (более 200 кДж/моль) разбивается на небольшие и более удобные «пакеты», величина которых определяется разностью окислительно-восстановительных потенциалов соответствующих промежуточных продуктов. Предполагается, что это разделение на пакеты обеспечивает дыхательной цепи удивительно высокий выход энергии, составляющий примерно 60 %.

На схеме представлены основные окислительно-восстановительные системы митохондриального электронного транспорта и их приблизительные окислительно-восстановительные потенциалы. Эти потенциалы важны для переноса электронов, так как для обеспечения спонтанного переноса члены окислительно-восстановительного ряда должны располагаться в порядке возрастания потенциалов (см. Методы выделения и анализа белков).

В комплексе I электроны переносятся от НАДН на ФМН (FMN, см. Устройство и функционирование эндоплазматического ретикулума и аппарата Гольджи), а затем на железосодержащие белки (Fe/S-центры). Эти окислительно-восстановительные системы стабильны только в составе молекул белков. Они могут содержать от 2 до 6 ионов железа, образующих комплексы различного состава с неорганическим сульфидом и SH-группами остатков цистеина. На схеме показана структура так называемого Fe4S4-центра.

В переносе электронов принимают участие различные типы гемов. Гемы типа b соответствуют гемоглобинам (см. Транспорт газов). Гем с ковалентно связан с белком, в то время кактетрапиррольное кольцо гема a изопренилировано и несёт формильную группу. В комплексе IV непосредственно с кислородом взаимодействуют ион меди (CuB) и гем a3. Свойства кофермента Q и цитохрома с рассмотрены на Дыхательная цепь.


Метаболизм. Энергетика / Синтез АТФ

Статьи раздела «Синтез АТФ»:

Следущая статья   |   — Вернуться в раздел


Fundamentals of Forensic DNA Typing / An introductory text on forensic DNA analysis, written by the foremost expert in the field.Fundamentals of Forensic DNA Typing
An introductory text on forensic DNA analysis, written by the foremost expert in the field.
Микрокосм. E. coli и новая наука о жизни / Цитата «В начале XX в. учёные, стремясь познать природу жизни, начали исследовать безвредные штаммы E. coli. И кое-кому из них уже в конце первого десятилетия пришлось съездить в Стокгольм за Нобелевскими премиями, присуждёнными за эти работы. Позже новые поколения учёных пытались разобраться в устрМикрокосм. E. coli и новая наука о жизни
Цитата «В начале XX в. учёные, стремясь познать природу жизни, начали исследовать ...
Обмен фосфорных соединений / Вашему вниманию предлагается издание «Обмен фосфорных соединений».Обмен фосфорных соединений
Вашему вниманию предлагается издание «Обмен фосфорных соединений».
Влияние тяжелых металлов на процессы биохимического окисления органических веществ / В научной монографии рассмотрены основные направления очистки сточных вод, содержащих тяжёлые металлы. Показаны перспективы технологических решений при очистке сточных вод, содержащих тяжёлые металлы, с целью увеличения окислительной мощности последующих стадий очистки на биологических сооружениях. Влияние тяжелых металлов на процессы биохимического окисления органических веществ
В научной монографии рассмотрены основные направления очистки сточных вод, ...